

Edexcel GCSE Physics

Topic 2: Motion and Forces

Notes

(Content in bold is for Higher Tier only)

This work by PMT Education is licensed under CC BY-NC-ND 4.0

Vectors & Scalars

A Vector has magnitude and direction

A Scalar has just magnitude

- Generally, scalar cannot be negative, but vectors can be, as a certain direction is positive

Examples

- Speed is scalar

Velocity is a vector

Distance is scalar

Displacement is vector

Time is scalar

Acceleration is a vector

- Force is vector
- Mass is scalar

- Momentum is a vector
- Energy is scalar

Imagine a ball is thrown off a cliff, the displacement is 0 at height of cliff, above the cliff the ball has positive displacement, and below the clifftop the ball has negative displacement.

- In long answer questions, you may be able to decide where the "0" point of a vector may lie, for example you could set zero to be bottom of cliff, so the ball will never have negative displacement
- Speed is only velocity when given a direction, so thrown $10ms^{-1}$ is its speed but thrown $10ms^{-1}$ at 30' above the horizontal is the velocity

Graphs

Displacement Time Graphs

- Gradient is velocity
 - Sharper gradient means faster speed
 - Negative gradient is returning back to starting point
- Horizontal line means stationary
- 0 Distance means that it is back to starting point
- Area under line = nothing
- Curved Line means the velocity is changing (acceleration)

Velocity Time Graphs

- Gradient is acceleration
- Sharper gradient means greater acceleration
 - Negative gradient is deceleration
- Horizontal line, constant speed
- 0 velocity means that it is stationary
- Area under line = distance travelled
- Curved Line means that the acceleration is changing

Average Speed

- This is for when the speed changes during the motion
- Use overall distances and timings to work out average speed

▶ Image: Contraction PMTEducation

Methods to Determine Speeds

- For constant speeds
 - o Measure distance travelled
 - o Use stopwatch for time taken
 - Use speed = $\frac{\text{distance}}{\omega}$
- For average speed
 - o Work out total distance travelled
 - o Find the time taken for the whole journey
 - Use speed = $\frac{\text{distance}}{1}$
- Using light gates
 - Set up two, one at start and one at end
 - Measure distance between them
 - As soon as the object passes through the first, it will measure the time taken to reach the second
 - Then use speed = $\frac{\text{distance}}{\cdot}$
 - This is more accurate as removes reaction time and human error with a stopwatch

Recall typical speeds:

- Wind $5 7ms^{-1}$
- Sound 340ms⁻¹
- Walking 5km/h = $\sim 1.4ms^{-1}$
- Running $\sim 6 \text{ miles per hour} = \sim 3ms^{-1}$
- Cycling 15km/h = $\sim 4ms^{-1}$
- Bus 14km/h
- Train 125miles/h
- Plane 900km/h

Acceleration due to gravity: $g = 10ms^{-2}$

Newton's First Law

An object has a constant velocity unless acted on by a resultant force

- If a resultant force acts on the object, it will accelerate
 - Acceleration is change in velocity over time
 - \circ $\;$ So the velocity will change
 - \circ $\;$ So the direction or speed of the object will change (or both)
- If the resultant force is zero
 - $\circ \quad \text{No acceleration} \quad$
 - o So moving at constant velocity (so same speed and same direction)
 - Or the object is at rest (no speed)

Newton's Second Law

Force = mass \times acceleration

F = ma

where force is in Newtons, N, mass is in kg and acceleration in ms⁻².

Weight

 Measured using a force meter, or weighing scales, and is used to work out mass of unknown object

- The greater the gravitational field strength, the greater the weight

Circular Motion

Object moving in a circle, with constant speed

- The speed is constant, but direction always changing
- So the velocity is always changing
- So it is accelerating

Force

- For motion in a circle, there must be a force which supplies this acceleration
- This is called centripetal force, and is directed towards the centre of the circle

Inertial Mass

- This is a measure of how difficult it is to change the velocity of an object (including from rest)
- It is measured by inertial mass $=\frac{\text{force}}{\text{acceleration}}$

Newton's Third Law

Every action force has an equal and opposite reaction force

- A book on a table
 - \circ The weight of the book on the table = The reaction force on the book by the table
- Rocket taking off
 - The force of the gases being ejected from the rocket is equal to the force that lifts the rocket from the surface
- Collisions
 - Two marbles colliding
 - \circ $\,$ The force exerted by one marble on the other is the same as the force from the other $\,$

Momentum

- Momentum is always conserved in a collision (where there are no external forces like friction, air resistance, electrostatic attraction etc.)

$$momentum = mass \times velocity$$

$$p = mv$$

- Where p is the momentum in kgms⁻¹, m is the mass in kg and v is the velocity in ms⁻¹.
- In collisions:

total momentum before = total momentum after

- So two marbles colliding, each will have momentum before and after the collision
 - Remember momentum is a vector

For Newton's Second Law

Force = $\frac{\text{change in momentum}}{\text{time}} = \frac{(mv - mu)}{t}$

Human Reaction Time

- There is a delay between a human observing an event, and acting
- Ruler Drop Experiment
 - \circ $\;$ Someone else holds a ruler just above your open hand $\;$
 - They drop it at a random time
 - o Record the distance from the bottom of the ruler to the point where it was caught

- Average this, and 1cm is 50ms, 2cm 60ms, and so on
- Average human reaction is 0.25 seconds (250milliseconds)

Vehicle Stopping Distances

0

- After seeing a hazard

- Before you react, during reaction time you travel X metres
 - Thinking Distance
- Then you react, causing the car to slow down and stop over Y metres
 - Braking Distance

Thinking Distance

- Speed
- Affected by reaction time
- Concentration
- Tiredness
- Distractions
- Influence of drugs/alcohol

Braking Distance

- Speed
- Poor road conditions (icy, wet)
- Bald tires (low friction)
- Worn brake pads
- Mass (more passengers)

Typical Stopping Distances (Physics only)

20 mph (32 km/h)	6 m 6 m = 12 metres (40 feet) or three car lengths					The distances shown are a general guide. The distance will depend on your attention (thinking distance), the road surface, the weather conditions	
30 mph (48 km/h)	9 m 14 m = 23 metres (75 feet) or six car lengths					Thinking Distance Braking Distance	
40 mph (64 km/h)	12 m	ŧ.	24 m	= 36 metres (118 feet) or nine car lengths		F	erage car length = 4 metres (13 feet)
50 mph (80 km/h)	15 m	\rightarrow	38 m		= 53 metres (175 feet) or thirteen car lengths		
60 mph (96 km/h)	18 m			55 m		= 73 metres (240 feet) or eighteen car lengths	
70 mph (112 km/h)	21 m		>		75 m		= 96 metres (315 feet) or twenty-four car lengths
ww	w.brake.org.uk						

- Speed and Braking Distance
 - Greater the speed, the greater distance travelled during the same time (reaction time)

Dangers of Large Decelerations

- When in a crash, there is a large deceleration over a very short time as you stop moving from a high speed.
- As force = mass \times acceleration, this large deceleration means a great force is exerted on the car, and the passengers
- This force is can cause injury

In terms of Momentum

- Before the crash, you have a large momentum (due to high velocity)
- After the crash, you have no momentum (as you are not moving)
- So force = $\frac{\Delta \text{ momentum}}{\text{time}}$ so a great force is felt

To estimate the forces felt on a road

- Use known values of mass and acceleration to calculate force
- Average mass of a car ~1500kg

Work Done to Stop (Physics only)

- The work done to stop a vehicle is equal to the initial KE of the vehicle
 - As all the kinetic energy the car had has to be transferred to friction for it to stop

▶ Image: Contraction PMTEducation

- Braking distance \propto (initial velocity)² as work done = $KE = Fd = \frac{1}{2}mu^2$

Mathematical skills

- Convert units
- Interpret distance/time and velocity/time graphs
 - Including gradients and area underneath (for v/t graphs)
 - Calculate distance, speed and time for:
 - $\circ \quad \text{Uniform speed} \quad$
 - $\circ \quad \text{Uniform acceleration} \\$
 - Non-uniform motion (and work out average speed)
- Estimate stopping distances for a car at a range of speeds
- Calculate force, mass and gravitational field strength using formulae
- Calculate force, mass, velocity and acceleration using formulae
- Estimate the speed, accelerations and forces involved in large accelerations for everyday road transport

0

▶
O

 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O

