Edexcel GCSE Physics

Topic 2: Motion and Forces

Notes
(Content in bold is for Higher Tier only)

A Vector has magnitude and direction
A Scalar has just magnitude

- Generally, scalar cannot be negative, but vectors can be, as a certain direction is positive

Examples

-	Speed is scalar	-	Distance is scalar
-	Velocity is a vector	-	Displacement is vector

- Force is vector
- Momentum is a vector
- Mass is scalar
- Energy is scalar

Imagine a ball is thrown off a cliff, the displacement is 0 at height of cliff, above the cliff the ball has positive displacement, and below the clifftop the ball has negative displacement.

- In long answer questions, you may be able to decide where the " 0 " point of a vector may lie, for example you could set zero to be bottom of cliff, so the ball will never have negative displacement
- Speed is only velocity when given a direction, so thrown $10 \mathrm{~ms}^{-1}$ is its speed but thrown $10 \mathrm{~ms}^{-1}$ at 30^{\prime} above the horizontal is the velocity

Graphs

Displacement Time Graphs

- Gradient is velocity
- Sharper gradient means faster speed
- Negative gradient is returning back to starting point
- Horizontal line means stationary
- 0 Distance means that it is back to starting point
- Area under line = nothing
- Curved Line means the velocity is changing (acceleration)

Velocity Time Graphs

- Gradient is acceleration
- Sharper gradient means greater acceleration
- Negative gradient is deceleration
- Horizontal line, constant speed
- 0 velocity means that it is stationary
- Area under line = distance travelled
- Curved Line means that the acceleration is changing

Average Speed

- This is for when the speed changes during the motion
- Use overall distances and timings to work out average speed

Methods to Determine Speeds

- For constant speeds
- Measure distance travelled
- Use stopwatch for time taken
- Use speed $=\frac{\text { distance }}{\text { time }}$
- For average speed
- Work out total distance travelled
- Find the time taken for the whole journey
- Use speed $=\frac{\text { distance }}{\text { time }}$
- Using light gates
- Set up two, one at start and one at end
- Measure distance between them
- As soon as the object passes through the first, it will measure the time taken to reach the second
- Then use speed $=\frac{\text { distance }}{\text { time }}$
- This is more accurate as removes reaction time and human error with a stopwatch

Recall typical speeds:

- Wind
- $\quad 5-7 m s^{-1}$
- Sound - $340 \mathrm{~ms}^{-1}$
- Walking - $5 \mathrm{~km} / \mathrm{h}=\sim 1.4 \mathrm{~ms}^{-1}$
- Running - ~ 6 miles per hour $=\sim 3 \mathrm{~ms}^{-1}$
- Cycling - $15 \mathrm{~km} / \mathrm{h}=\sim 4 \mathrm{~ms}^{-1}$
- Bus - $14 \mathrm{~km} / \mathrm{h}$
- Train - 125miles/h
- Plane - $900 \mathrm{~km} / \mathrm{h}$

Acceleration due to gravity: $g=10 \mathrm{~ms}^{-2}$

Newton's First Law

An object has a constant velocity unless acted on by a resultant force

- If a resultant force acts on the object, it will accelerate
- Acceleration is change in velocity over time
- So the velocity will change
- So the direction or speed of the object will change (or both)
- If the resultant force is zero
- No acceleration
- So moving at constant velocity (so same speed and same direction)
- Or the object is at rest (no speed)

Newton's Second Law

$$
\begin{gathered}
\text { Force }=\text { mass } \times \text { acceleration } \\
\qquad F=\text { ma }
\end{gathered}
$$

where force is in Newtons, N , mass is in kg and acceleration in ms^{-2}.

Weight

- Measured using a force meter, or weighing scales, and is used to work out mass of unknown object
- The greater the gravitational field strength, the greater the weight

Circular Motion

Object moving in a circle, with constant speed

- The speed is constant, but direction always changing
- So the velocity is always changing
- So it is accelerating

Force

- For motion in a circle, there must be a force which supplies this acceleration
- This is called centripetal force, and is directed towards the centre of the circle

Inertial Mass

- This is a measure of how difficult it is to change the velocity of an object (including from rest)
- It is measured by inertial mass $=\frac{\text { force }}{\text { acceleration }}$

Newton's Third Law

Every action force has an equal and opposite reaction force

- A book on a table
- The weight of the book on the table = The reaction force on the book by the table
- Rocket taking off
- The force of the gases being ejected from the rocket is equal to the force that lifts the rocket from the surface
- Collisions
- Two marbles colliding
- The force exerted by one marble on the other is the same as the force from the other

Momentum

- Momentum is always conserved in a collision (where there are no external forces like friction, air resistance, electrostatic attraction etc.)

$$
\text { momentum }=\text { mass } \times \text { velocity }
$$

$$
p=\boldsymbol{m} v
$$

- Where p is the momentum in $\mathrm{kgms}^{\mathbf{- 1}}, \mathrm{m}$ is the mass in kg and v is the velocity in ms^{-1}.
- In collisions:

$$
\text { total momentum before }=\text { total momentum after }
$$

- So two marbles colliding, each will have momentum before and after the collision
- Remember momentum is a vector

For Newton's Second Law

$$
\text { Force }=\frac{\text { change in momentum }}{\text { time }}=\frac{(m v-m u)}{t}
$$

Human Reaction Time

- There is a delay between a human observing an event, and acting
- Ruler Drop Experiment
- Someone else holds a ruler just above your open hand
- They drop it at a random time
- Record the distance from the bottom of the ruler to the point where it was caught
- Average this, and 1 cm is $50 \mathrm{~ms}, 2 \mathrm{~cm} 60 \mathrm{~ms}$, and so on
- Average human reaction is 0.25 seconds (250milliseconds)

Vehicle Stopping Distances

- After seeing a hazard
- Before you react, during reaction time you travel X metres
- Thinking Distance
- Then you react, causing the car to slow down and stop over Y metres
- Braking Distance

Thinking Distance

- Speed
- Affected by reaction time
- Concentration
- Tiredness
- Distractions
- Influence of drugs/alcohol

Braking Distance

- Speed
- Poor road conditions (icy, wet)
- Bald tires (low friction)
- Worn brake pads
- Mass (more passengers)

Typical Stopping Distances (Physics only)

- Greater the speed, the greater distance travelled during the same time (reaction time)

Dangers of Large Decelerations

- When in a crash, there is a large deceleration over a very short time as you stop moving from a high speed.
- As force $=$ mass \times acceleration, this large deceleration means a great force is exerted on the car, and the passengers
- This force is can cause injury

In terms of Momentum

- Before the crash, you have a large momentum (due to high velocity)
- After the crash, you have no momentum (as you are not moving)
- \quad So force $=\frac{\Delta \text { momentum }}{\text { time }}$ so a great force is felt

To estimate the forces felt on a road

- Use known values of mass and acceleration to calculate force
- Average mass of a car $\sim 1500 \mathrm{~kg}$

Work Done to Stop (Physics only)

- The work done to stop a vehicle is equal to the initial KE of the vehicle
- As all the kinetic energy the car had has to be transferred to friction for it to stop
- Braking distance $\propto(\text { initial velocity })^{2}$ as work done $=K E=F d=\frac{1}{2} m u^{2}$

Mathematical skills

- Convert units
- Interpret distance/time and velocity/time graphs
- Including gradients and area underneath (for v/t graphs)
- Calculate distance, speed and time for:
- Uniform speed
- Uniform acceleration
- Non-uniform motion (and work out average speed)
- Estimate stopping distances for a car at a range of speeds
- Calculate force, mass and gravitational field strength using formulae
- Calculate force, mass, velocity and acceleration using formulae
- Estimate the speed, accelerations and forces involved in large accelerations for everyday road transport

